If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+17x-9.1=0
a = 2; b = 17; c = -9.1;
Δ = b2-4ac
Δ = 172-4·2·(-9.1)
Δ = 361.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-\sqrt{361.8}}{2*2}=\frac{-17-\sqrt{361.8}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+\sqrt{361.8}}{2*2}=\frac{-17+\sqrt{361.8}}{4} $
| 3y+5=2y+10 | | 4a+11=34 | | -8v+4v=-15-19 | | 5+2x-1/15=17x1/15+6 | | 4(0.5+2x)=x+5 | | -112=-5x=6x-9 | | 3x-(3-2x)=7 | | 9(2n+3)=6(9n+3)+6 | | 5(2x1)=50 | | 4y+8=64 | | 5-m/4=12 | | 27=3u-39 | | 56=16+4g | | 0.20x+3x=2x+42 | | 23-3q=14 | | 68+7x=19x-4 | | 4x(2-x)=-3(x+2) | | 1/2n+7=n+2/2 | | 6t-2=80 | | 4v+4=3v+3 | | 6p+4/7=4p-8/3 | | 3=-2f+-23 | | 25-4r=13 | | 2x+7-2×(x-1)=3×(x+3) | | f(5)=3(5)^-7(5)-6 | | (6y+1)-3y=6 | | 12=4q-4 | | 4x+2,8=7.2 | | f(5)=3(5)^2-7(5)-6 | | 10(s-6)=166 | | 3y^-20=160-2y^ | | x-2x-5=3x-1 |